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We expand a multiple symmetric a-stable integral
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Introduction. Let Z be a symmetric Levy a-stable process on 10, 1] with the charac-

teristic function

Eexp{itZ(u)} = exp{-ultG}, 0 < a < 2,

and let f be a real symmetric Borel function on [0, 11'" vanishing on diagonals. A random

functional

(0.1) I.(f) f f- f(Zl,.- X') dZ (x )... dZx)

extends the notion of the multiple Wiener integral in a natural way. Existence and char-

acterization problems, not necessarily restricted to the stable case, have recently attracted

attention of many authors. For a unified presentation of a classical theory due to Wiener

and It6 and for further historical background we refer to Engel (1982).

Basically, a general definition of a multiple stable integral of type (0.1) proceeded by

a construction of a stable product random measure, is due to Krakowiak & Szulga (1988).

However, the first characterization of integrands of a double a-stable integral in case

of a E [1, 2) was obtained by Rosinski and Woyczynski (1986), and it was generalized to

an arbitrary a E (0,2) by Kwapien and Woyczynski (1987). Their condition is hardly

extendable for general multiple stable integrals due to an internal complicacy even though

a triple stable integration criterion of a similar nature was recently found by McConnell

(1986).

In the present paper we make a step towards a characterization of a distribution of

a multiple stable integral by evaluating its limit behavior under a suitable normalization.

We show that

(0.2) 2 lim z(lnz)-'P(I,(f) > z)
Z cc

=lim zo(lnx)In"P(In,(f)I > x)

provided

(0.3) foal- IfI*(1 + 6n(f))(lri.fIn"") < cc.
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where s = f0x - sinx dx, 6,, =1 if n $ 2, and 62(f) = In, In- I f1.

Observe that the first equality in (0.2) follows trivially only if n is an odd integer. In

general, l,(f) is not a symmetric random variable if n is an even integer even though it S

behaves like such because, in a sense, it is dominated by a symmetric term.

We notice that a related result was derived by Surgailis (1985) from an interpolation

theorem in Lorentz spaces. Namely, he proved that for 1 < p < a < 2
(0.4) (E JI . ( f ) JP) ' /P < Cl[f 1L'- log "- - Lidp,':ii"

where the r.h.s. term is a norm in a Lorentz space of random variables generated by

a functional analogous to the one appearing in the r.h.s. of (0.3) (with the Lebesgue

measure dx replaced by certain measure du). A discrete counterpart of (0.4) was obtained

by Rosinski & Woyczynski (1987).

The paper is organized as follows. Section 1 introduces the notation and provides

a collection of basic facts concerning multilinear random forms and multiple stochastic

integrals. In Section 2 we prove LePage-type representation of I(f). The distribution

of products of arrival times, essential for our purpose, is studied in Section 3. Section

4 contains technical results on comparison of multiple series and multiple integrals. The

asymptotic e'aluation of the tail of the distribution of I(f) is obtained in Section 5.

Al though we use elementary methods a combinatoric complexity of multiple sums and

integrals might suggest that some techniques seem more intrinsic than, in fact, they are.

A suitable notation is introduced to avoid unnecessary misunderstandings.

1. Preliminaries. In this paper {Z(t), t E 10,1]) denotes a symmetric a-stable mo-

tion, i.e. a process with independent stationary increments such that Eexp{itZ(u)} =

exp{-utlO), 0 < a < 2. For each n > 1, Z(t) generates a random measure MWn1 on Borel

sets in 10, 1]1 defined as a vector measure satisfying the identity

M(n)(Al x ... x A,) = M(Al) ...- M(An)

(Krakowiak & Szulga (1988)). Observe that only M 1 , denoted for the sake of simplicity

by M, is independently scattered, i.e. its values on disjoint sets are independent random

variables.

3
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The following notation is used throughout the paper:

(Un)-a sequence of i.i.d. uniformly distributed random variables on [0, 1];

(Xn)-a sequence of i.i.d. exponentially distributed random variables with unit intensity;

(rn)-a sequence of arrival times of a Poisson process, i.e. r= X, + ... + X,;

(En)-a sequence of i.i.d. Bernoulli random variables, i.e. P(n = 1) = P(n = -1) = 1/2.

1{...) will denote the indicator function of a set (or a property) {...}.

For the convenience of a typographer and a reader we introduce an abbreviated notation

for expressions involving multiple indices. Any bold-face character denotes a finite or

infinite sequence. e.g. a = (a)), j = (j . .jn). A bold-face subscript is related to a

restriction of a sequence to suitable coordinates, for example, aj = (a),... ,a,). By

definition.

We shall also write subscripts with the mathematical expectation symbol "E", e.g. E, Er,

etc., a convenience of which will be especially appreciated whenever Fubini's Theorem is

in use. We shall skip the index of stability a in all quantities used in this paper.

LP denotes the space of p-integrable random variables with usual norm (quasi-norm. if

p < 1) 1I1 - 1 = (El- IP)'P. For k > 1 we introduce a linear space Ak of all random variables

for which the limit

Ak(X) = lim z(lnz)-kP(X > z)
Z00

exists. We shall be using frequently an observation based on the following elementary fact.

LEMMA 1.1 Let X and Y" be positive random variables. Suppose that X has a

regularly varying tail, i.e. there is a number e > 0 such that for every number a > 1

P(X > ax)
lim =a - .

d -o P(X > X)

Suppose that the tail of X dominates the tail of a random variable Y in sense that

lim P(Y > z) 0.
Z- P(X > X)

4
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Then
lir P(X + Y > X) = lir P(X- Y > X)

Z - P(X>z) -00 P(X>z)

Proof. Clearly, for any a, 0 < a < 1, we have

P(X + Y > )"
lir sup P(X>)

P(X > X)

< limsup f(Y > OX) + P(X > (1 - a)z)
Z- ,-.P(X > z)

P(Y > az) P(X > ax) lims P(X > (I - ,)) (
_ ir sup P(X > ax) P(X > z) -li. P(X > X)

Since, obviously,

li~fP(X +Y > X)>lirinf P(X>) 1,

the first part of the lemma follows. The second part can be proved in a similar way. I

Corollary 1.2. Let X E Ak. Then, under assumptions of Lemma 1.1, X + Y E Ak

and Ak(X + Y) = Ak(X). *

The remainder of the section contains a collection of basic properties of multilinear

random forms which are defined as formal sums

< 9Ax >= >_L 9WI)XJI,
JENn

where g is a real function on N" and X = (X,) is a sequence of real random variables. Let

Dn = {i = (i, .. , in) E N n : il < ... < in}, and observe that if a function g is symmetric,

i.e. (j) = g(J 7r) for every j E N n and for every permutation 7r of the sequence (1,..., n),

and g vanishes on diagonals of N", i.e. g(j) = 0 whenever at least two entries of j are

equal, then

< 9,x >= E > DXg . ::,

For this reason we consider tetrahedral multilinear forms only, i.e. related to functions g

with a domain in Dn. We say that a multilinear random form < g, X > converges if

UDi) lXjI In 5 U)
J4Dn

5



converges in an appropriate sense as u -- ac. In general, most of the properties of multi-

linear random forms for independent symmetric random variables follow from their coun-

terparts for Bernoulli random variables by virtue of Fubini's Theorem. We quote below S

several results useful for our purposes.

Theorem 1.3. Let X = (XY) be a sequence of independent symmetric random variables

and g be a real function on D,. The following statements hold:

(i) (Krakowiak 8 Szulga (1986a)). A random multilinear form < g, X > converges a.s. if ,

and only if it converges in probability if and only if

g(j)2[Xj]2 < oca.s.
J D %

(ii) Contraction principle (Krakowiak & Szulga (1986b)). If h is a real function on D" such

that IhI < 1 then a.s. convergence of < g,X > implies a.s. convergence of < g h.,X >. S

Moreover, if {X)} C L' then there is a constant C > 0 depending only on n and p such

that

EJ <g. h,X> IP < C Ej <g,X> 1
P .

(iii) (Krakowiak & Szulga (1986b)). Let {X)} C LP-. Suppose that (g,,,) is a sequence of

real finite valued functions on D n such that the sequence (< g, X >) converges in LP for

some p E 10. [x]. Then there is a real function g on Dn such that the multilinear random

form < 9,X> converges in LIP and it forms an L. -limit of the sequence (< gn,X >).

For a real positive function t on R, we define, for r > 0,

0,(X) = tGr7 ), x 0.

Following Kallenberg (1975), we consider a class K. of real positive functions 0 on R,

satisfying the following properties I

(K1) 4(0) = 0;

(K2) 0 is a concave and increasing function;

(K3) Or belongs to Kallenberg's class F U F2, i.e. either it is concave or it is absolutely

continuous with the concave derivative 4" vanishing at the origin.

%I
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It is easy to see that (KI) and (K2) above imply that any 0 in K, satisfies A2 condition.

i.e. for any c > 0 there is 0 < d(c) < ac such that for any x > 0

(1.1) 'z(cx) < d(c) (z)

Lemma 1.4. Let * be a function from Kr, r > 0 and ( be a Bernoulli sequence. Then

there is a constant C > 0 such that for every n-dimensional tetrahedral random array

[X(i), i E D,] independent of * the following inequality holds:

EOr(l < X, > 1) :- CnEEEr(lX(i)l).

Proof. The statement follows from Lemma 2.1 in Kallenberg (1975) as multilinear tetra-

hedral Bernoulli forms are martingales. *

EXAMPLES. In the paper we shall make use of the following functions

(i) 0Z(z) =z,0 E K, r > ct;

(ii) 4*(x) x /i In" (a + x), *0 E K,, for a large enough.

In particular, choosing r = 2, one immediately obtains the generalized Khinchine -

inequality: "

where Cp does not depend on g (cf. also Krakowial. & Szulga (1986a)).

Remark 1.5 Once a random multilinear form < g, X > in symmetric random variables

X = (X,) converges a.s., it converges unconditionally, i.e. regardless of any determinis-

tic permutation of its entries. This follows immediately from Fubini's Theorem and the

generalized Khinchine inequality.

2. Le Page's representation of multiple stable integral. In 1984 Marcus & Pisier

proved, elaborating the results of Le Page (1980) and Le Page, Woodroofe & Zinn (1981),

that for any function f E L([o0, 11)

(2.1) f(t) d(t) SD-1 af(uj)r;lic

7



1, . . .

where a = j z - 0 sin x dz, and U, r, E are independent of each other, and the series in

r.h.s. of (2.1) converges a.s. and in LP, p < a.

In particular, one obtains a series representation of a stable motion

(2.2) (z(t). o < t < 1)= (s"t, {' < t}r; , ,, 0 < t < 1),

and therefore a counterpart of (2.1) for a multiple stable integral is expected to hold. A

possibility of such a representation, at least for n = 2 and n = 3, was mentioned in the

paper of McConnel (1986).

The aim of this section is to extend Le Page's representation to the multiple stable 5

integral.

Recall that a symmetric vanishing on diagonals Borel function on 10, 1]" is said to be

integrable with respect to MW if there is a sequence (fin) of simple functions converging

in Lebesgue measure to f such that multiple stochastic integrals In(fmo) = fjojj" fdM(-)

(defined in a usual way) converge in probability (or equivalently, in LP.0 < p < a). The

limit is denoted by In(f) or by either of following integrals S

f dM (n ) = ... f(t, .  tn)Mf(dt )... M(dtn)

(see Krakowiak & Szulga (1988) for details.)

Theorem 2.1. For any symmetric vanishing on diagonals Borel function f on (0, 1]n

(2.3) ,ij" f dMVfn) '

where the integral ezists and the series converges unconditionally a.s., or equivalently, in

LP.O < p < a, at the same time. The sequences U, r and E are independent of each other.

Proof- By virtue of Le Page's representation we may choose an a-stable random

measure, and a fortiori, a product random measure M n) generated by the a-stable process

Z(t) = E I{U, < t}rl /i,. Denoting the multiple series appearing in (2.3) by Sn(f)

whenever it makes sense, we infer immediately that formula (2.3) holds a.s. for simple

functions.

'. '
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Suppose that 4~(f) exists. By definition, there is a sequence of simple functionsU)

converging in Lebesgue measure to f, and such that I, (fm) converges in LI', 0 < p < a,

to a random variable Y in LP'. Hence Sn(fm..) converges in LP' to Y. By Theorem I.3(iii),

V=S,,(g) a.s. for some function g E LP', and the multiple series S.(q) converges a.s. by

part (i) of that theorem. For U and r being fixed, S,,(9) is a Bernoulli rnultilinear form.

Therefore we infer from Fubini's Theorem, Theorem 1.3(i) and the generalized Khinchine

inequality that S,,(g) converges in L' and thus

g~ujrjjJ= E, S. (g) [,1

= im E, S.(f,.)f,

limf.f(uj,)j IO

= f(u,)jr,]-l/

(U, r)-a-s. Therefore f = 9 almost everywhere on 10, 1]'- and 1,,(f) =S.(f) a.s.

Suppose now that the series S,,(f) converges in probability (Or equivalently, by Theo-

rem 1.3(i), almost surely). For k = 1, 2.and x > 0 define

Hk z) = H (- r) = 2-ki. if X E [2 -ki, 2 -k(i + 1)), i = 0, 1.... 2 2k-I{ 0. if x> 2k.
We observe that 0 < Ix - !Hk(x)I < 2-k and thus applying the contraction principle

(Theorem 1.3(ii)) we infer that the series Sn(Hk(f)) converges in probability. Further,

(I. (Hk (f )); n E N) is a Cauchy sequence in LO because by virtue of Fubini's Theorem and

Lebesgue's Dominated Convergence Theorem we have that

lim Emin(1, fIf(Hk(f) - Hin(f)) 12 )
k ,m -o

=lirn Emin(1,ISn,(Hk(f)-Hm.(f))12 )

< lim Eurmin(1,EISn(Hk(f)-Hm(f))12 )

=lirn Eurmin(l,E Hk(f (U,))-Hm(f(uj))Il~rijJ2 a) -0

Since (HA (f)) is a sequence of simple functions converging almost everywhere to f

then the latter identity implies the existence of I,,(f). Moreover, it follows from the first

part of the proof that I.(f) = S';(f) a-s.

% %



Unconditional convergence is a general feature of random multilinear forms in sym-

metric random variables (cf. Remark 1.5). 1

3. Products of Poisson arrivals. Most of properties of products of arrival times of a

Poisson process presented in this section is a part of a mathematical folklore. For the sake

of convenience we collect them in one place.

Lemma 3.1. For n > 1 and t > 0

h,(t)dP(Ut .... 7U- I< t) =t (-lnt)k Ik! if t < 1

S1 otherwise.

Proof. It is enough to check that for t < 1

hn(t) = P(Xi + ... + X, > -int)

and use well known formula for the Erlang distribution (cf. Feller (1971)). 3

Lemma 3.2. Define, for t > 0 and k > 0,

Ak N = t f '(iny)ke tydy

Then

limfk(t)/(-lnt)k 1
t-0o

Proof. Elementary calculus (l'Hospital formula, change of variables of integration, induc-

tion. etc.) is working. *

Lemma 3.3. For n > I we have

lir P(r1  .r <t) _ 1
t-o t(-lnt)n-  (n- 1)n!

Proof. The identity is trivial for n = 1. Let n > 2. Using well known formula for converting

arrival times of a Poisson process into i.i.d. uniformly distributed r.v. (cf. e.g. Karlin

(1968)) we check that

g,(t) f 0-'P(ri /...., r, I/ < t/:lr, = x)ez-' /(n - 1)!dx
"-

10 5.
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Applying Lemma 3.1 we prove by elementary calculation that
n-2 I

g(t) = (n - 1)!_, Y n'/(k + 1)! fkI(t',,),
k=O

which. combined with Lemma 3.2, completes the proof.

Corollary 3.4. Let X E L* be a nonnegative random variable independent of r. Then

for j (1,2,... ,n) and a > I

An]-,,,yiot. - n-IEX°

A~1(~r~-Ii) =(n - 1)!n!'

t o
sup (ln(t + a)) - P(Xlrjl-/" > t) < CEX(1 + (In. X-I)"-1 ),t>O --~ a)-

where a constant C depends only on a, a and n.

Lemma 3.5. Let n > 2. Then

(3.1) lir sup P(t . _n-. - r 0 < 00.
f-00 t(-(nt)n-2 -

Proof. Since the joint density f(.,.) of (rn, rn-,1) is given by the formula

{ Iy) e- yx n- (n - ) ifO<x<y

0 otherwise.

then the l.h.s. of (3.1) is equal to

j P(r, .... rn_, < t/yIr = Xrnl = y)f(x, y) dx dy

= - j j P(U ....-. g 5_1 <tl(z"-'y))f(x.y) dz dy.

Then, applying Lemma 3.1, we decompose the l.h.s of (3.1) into the sum

p n-2.

t Ep Ak+ B,
k=0 ON

where

Ak = J<E<y e-' Z-I(In(x-l1,/t))k dz dy"

11 ~Im

SS*
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and

B = 0!; V - ' dx dy.
Zn- Iv-t 0

It is easy to check (using e.g. the estimate e- < 1) that B < t' / n . The term A,

is of order at most (-Int)k as t -. 0 because, putting a = t1, ', we derive the following

inequalities from Lemma 3.2

Ak = s/o<< e-SY Y- i (!nzn-ly)k dx dy
111-l>1

< k af e-y(lny)kdy

n fk(s) nk(-Ins)k = (-Int)k.

Corollary 3.6. For anyj iE Dn, j = (j, . in) A (1,.-n)

lim sup P(il: 0 .isut-0 t(-Int)' - 2 ";

We conclude this section with an observation that for any number/3 > 1 there is a constant N

K > 0 such that for every sequence j = (j,. j,) E Dn such that j, > n,3 we have

(3.2) EI] - < K[1].

Indeed, this follows by the H6lder inequality from the well known estimate

Er(j - )/(j - 1)! < Kj - .

4. Comparison of multiple sums and integrals. Let 0 R_ -- R, be a nonin- 0

creasing function. J.

Lemma 4.1. For any u > 0

(i)~ f(i 6 ()+ (x) d.

(ii) yZ (i) < 4(u) + f 0(z)dx.

12
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Proof. Omitted,

Corollary 4.2. For u,v > 0

0 (vi) !5 0(v) + 0 (vx) dx.

11<u

Lemma 4.3. For etery n E N, and u,v > 0

(4.1) Z (V~j - k_
sJ N", i~ _=

where J(u,v) = ,(v), and, for k > I

Jk J(u,v 0 = j1) f 0( *(viX])dlx.

Proof. We use a standard induction argument. The case n = 1 is a straightforward

consequence of Corollary 4.2. Assume that (4.1) is valid for n - 1 for every u, v > 0 and

every nonincreasing function 0. Applying the induction hypothesis with "v" = vi and

"u" = u /i, we have that

<- 0 ;(v;, .i ...2
l 1< <_U J<12 ..... ,.<U/ ..

I<tj:5U k=O

We have Jo(u/i, vil) = $(vil), and we infer from Lemma 4.1(i) that

d (u/il, vil) :5 JA(u'V) + J ,+j(u, V)

1<11!5u

Changing the order of summation in (4.2) and handling routinely binomial coefficients we

* obtain the statement of the lemma valid for the integer n.

Corollary 4.4. For every n E N and every u > e

' ([il/u) <_2n u(Inu)n -  OU ( z - ' ) x - 2 dz + f(u - 1)

IE -nI1g

13e



Proof. We ormit a routine computation.*

Example 1. 0 = 1,

Example 2. -O(x) = 11x,

E. [iV' < (2ns + 1) (lnu)n-'. *i

Example S. *t(x) =x-' ln6 (a + x-1), b > 0. We choose a > e large enough to make 0 a

decreasing function and pick up iso > e. Then there is a constant C depending only on a

and uO such that for all us > io jC(1 - b)-1u(lnu)n-6 if 6 < 1

Z 0 Q'iI) !5 C i(lnu)n-'Inlns if 6 = 1

jij<U IC(b - 1)-' ts(lni)n- if b > 1.

Indeed, we estimate the integral in Corollary 4.4 as follows

f x1 n(a + x)- dx

<(a + 1) j(a +- x)-1 ln(a + x)-6dx

J(a + 1)(i -)'(n(u +a))1- 6 if 6 < 1
(a +1)lInln(a+ u) if b=11(a + 1)(6 - l)-'(ln(a + 1))1-6 if 6 >1I(a + 1)(1 - b)-'(ln(a + uo)/Inio)' 61(in u)"6 if 6 < 1

< (a + 1)(In In(a +uo)/(n n o))InIni u f 6= 1 *
(a + 1) (6 - 1) (In (a + 1))1 -6 if 6 > 1.

Define the operator 
'

F,.(4)(is) = O*(i])

on the class H,, of decreasing positive function 0on R,. such that

~(z) (lnx)"-' dz < cc.

14
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Lemma 4.3. There is a constant C, > 0 such that for all functions 4) E H, and for

u>e

(4.3) F,,(6)(u) <_ C, O(x) (tnx)"-'dx + 0(u) u (lnu)n-)

Proof. We apply an induction argument. For n = 1 even a stronger inequality is given

in Lemma 4.1(ii). Suppose that (4.3) holds for every 0 e Hn, and every u > e. We

decompose the l.h.s. of (4.3) into the sum of two terms as follows

00Fn (,)(,u) =F, Ci i(i....,.i)
i1 ... i,-l>u In=l

+ 0 * (ii . i)

1 ts .. -n l! u  tn>Ui11 ... 'n-i

= An(u) + Bn(u).

We begin with an estimation of the second term. By Lemma 4.1(ii) and by making p

use of the Examples 1 and 2 following Lemma 4.2, we infer that ,

Bn (u) <5 (u, ) + (i.....in_ )X )
q ... i,,~ .. <i/."t -

C(0(u) ,u (lnu)"- + (,nu)" 'f O(x) dx)

S<C(0(u) u (lnu)"- 1 + L O(x) (lnz)n - ' dx).

Using a similar argument, we check that

A(u) < (i .. .. ,) + j O(i -.... iny)d

F00
F= ._-(0)(,) + t (i) .. . .. _ )' (x)a ,

= ._.(0))(u) + F._0('),(u),

where O'(u) = u-I f D (z)dx.

By the inductive assumption and by integration by parts we have that

F,._(O')(u) C,_1 0 #*'(z)(tnz)"-dz + 0'(u) u (1nu)* - )

< 2C¢.. 1 , O(z) (tnz)"-'dz.

15



The latter observation and again the induction applied to (0) (u) combined with the

estimation of B.(u) concludes the proof.*

Exrample 4. Let 0 > 1 and put O(x) = z-0. Then there is a constant C > 0 such that

for u > e

Z i]13 < C u'-"(lnu)n-'.

5. Asymptotic evaluation of the tail. The main result of the paper (Theorem 5.3)

is stated and proved in this section, but first we study certain properties of tetrahedral

multilinear forms of the type

where X is an array of identically distributed random variables which is independent of f

and r sequences. We introduce some useful decompositions of the series S; . Put

JED.,j1 m

We decompose Tnm into two summands as follows.

T,m = Tni,m + Tnr,m

< ~I~"~~u~ 51} + ii (IrV/x{xIa>[j}

Proposition 5.1.(a) Let r > a, m > in0 > nr/cr n > 1. Then there is a finite constant

C' > 0 depending only on at, r, mo and n and independent of mn and the law of {Xj,j E Dn I

such that

ElTn,ml* 5 C1 {E [X 10(1 + (In+ JX I)- 1)] ~

(b) Consider O(z) = z/(ln(a + z))n I with a chosen large enough to have #0 in K.. Let

n > I and m > in0 > n. Then there is a finite constant C" > 0 depending only on a, m,

and n, and independent of m and the law of {Xjj E Dn} such that

E~(T,,f) C"E[IXjla(1 + (In+ X,. - if n > 2,

E~ j~ n",mj): C "E [XI (l + In+..IXjIln. IInIJX1)J if n = 2.

F 'V W



(c) Let n > 1, m > mo > n. Then there is a finite constant C"'i > 0 depending only on

a, mO and n, and independent of mn and the law of {Xj.j E Dn) such that

EIT,',m,Ia < C ofE[IXI-(l + (in, X. -]

Proof. (a) By Holder's inequality, Fubini's Theorem and Lemma 1.4 we conclude that

:5 C, ~ E[rJ)-rloE[IXl r1{IXJro <

Using the estimate (3.2) for moments of r, and the Example 4 following Lemma 4.3 (with

=nr/a) we bound th'e latter expression from above by th,- following quantities.

2[u-ay E( 11'1{k - 1 < Xj0 < k))] 1

k=11

eI Ij=

< CI{E IXI( + (In+ IXJIDn

(b) Applying Lemma 1.4 we get

E~ajT,mI,) !5 C' E E[.0UxI~r,-1/a)1{IxIa > 51] 1

JED,3i 17

By Fubini's Theorem, independence of r and U, moment inequality (3.2) and A2 property

(1.1) we conclude that the latter expression is bounded from above by

C# E[9[]1 1 @ F <~ J~' k + 1)]

JEDsJhm i
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Changing the order of summation and making use of Example 3 following Corollary 4.4

we obtain in the case n > 2

EfA¢ T,".) < C3' (k + 1)Di]-')P(k < IXJJ < k + 1)
k=1 JEDft

A 00

<C4 -(k + 1)(In(k + 1))"-'P(k < 1XI 1< k + 1) !5
k=1

CE[IXIa(1 + (In, IXjI)).

The case n = 2 is similar.

(c) The proof of this part is completely similar to the proof of (b).

Proposition 5.2. Let {X} be a sequence of identically distributed random variables,

independent ofr andi. sequences, such that E[IX 1 I* (1 + In, IXI I)] < oc. Define

j=nl =

Then - , -

Proof. The proof is by induction in n. For n = 2 we apply the contraction principle for

probabilities

P,11 > x) ! 2P~rj-' -'E (, (r. - r,)-"oxj > x),

and Proposition 5.2 follows from the independence of r, and {r, - rl} and Proposition 0

5.1(c) with n = 1, m0 = 2.

Assuming that Proposition 5.2 is valid for n - 1, we employ once more the contraction

principle for probability to get for z > 0

P(0IZn-, 1 > -Z)<_:,_

<4P[rTI*(r2 - r1 )-II/ ... (n- .jT r,)-1Iaj Z] (r S

N"1

t'



4 j e P(4z;1 l11> XyJ~yzj)J-pl~

Applying the assumption of the induction to the second integral in the expression above

completes the proof.

We introduce the following rnodulars defined on the class of Borel functions on 1O, 11 n:

L' log' L(f) !-' J*.. f, If (x) 1' [1 + (In,+ If (x) I) Idx, 6 > 0,

L' log Llog log L(f) !9 f* IO,1]t If(x)Ill 1 + In, If (x) Iln, tIIn If (x)[11 dx.

Now we formulate the main result of the paper.

Theorem 5.3. Let 0 < a < 2, n > 2 and f be a symmetric vanishing on diagonals

Borel function on 10, 1)" such that

L* log- L(f) <00o if n > 2,

L' log Llog log L(f ) < oc, if n =2.

Let MW' be the random measure generated on Borel sets in [0, j11" by a symmetric o-stable

process with d.tionary increments on [0, 1). Then f is M(n integrable and its integral

In(f) has the following property:

y',.fl)=2A- (nf) no, (n!) * 2 8-nL&(f),

where s = fol X_ sin x dx.

Proof. Fubini's Theorem and Theorem 1.3(i) imply that a necessary and sufficient con-

dition for the convergence of S.(f) (equivalently, the existence of J.(f)) is

(5.2) [rjrjV 2/aIf(uj)I? < 00 a.s.

We introduce the following partition of the set D.:

nI

(5.3) Dn U Dk
k Ap

Wi

LMMM _..
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where Do ={(1,2,... ,n)}, and for k = 1, 2,. n

Dn,k = {(1,2,... ,n - k.j, 2 . ...ik) " (Jl,... ,J) E Dk, j, > n - k + 2}.

Let us denote for k = 0, 1,... ,n

Zn,k = Z ktr[F-t f(U ),
JED,,t 0

An,k = : Z r [pof (u,) 1,.
j ED,.k

We will prove that An,t < --c a.s. for any k = 0, 1 .... n. This would imply (5.2) and.

simultaneously. the convergence of Zn,k's, k = 0, 1.... n.

Note that An,o < oc trivially since D,, 0 consists of only one element. Recall also that

by Corollary 3.4

(5.4) An- 1(IZ,oI) =2An-1(Z,o) = nanlI(n!)-L0(f)

since Zn,0 is a symmetric random variable. Note that in general In(f) (or Sn(f)) is not a

symmetric random rariable, except the case of the odd integer n, even though it behaves

like such due to its dominance by the symmetric random variable.

To complete the proof of the theorem we have, therefore, to show that An,k < OC a.s.

for k =1. n. and that

(5.5) An-(IZ,,,l) = 0 for k = 1,2,... ,n

Corollary 1.2, (5.4) and (5.5) would imply then (5.1). 0

The proof will use an inductive argument and, as it frequently happens with inductive

arguments, it is more convenient to prove somewhat more general claim. For any k

1.2,...,n andi>n-k+2define

=2 .... n..kj .  jk) (j, .. ") Dk, j , i

D D.k,. =(1.2,.n-- - i j1 .. .4) jI...jk) E Dk, j, 2! 5

20



Let {Xj.j E D,,} be an array of identically distributed random variables, which is inde-

pendent of r and csequences such that

E[IX,10 1 + (In, IXI~ln-1)] < oc if n > 2,

or

E[IX10( +ln-(IXI)lnIn+ Xj)]<00o if n =2.

Finally, let

JEDn'k,j

Bnkt= z rjVX2
JED.,,

and Yn,k,, and Bn*,k,, are defined correspondingly. We will prove that Bk., < ac a-s.

for any k = 1,...,n and i > n - k + 2 (this would imply that Ank < OC a.s. for any

k=1., n) and that

(5.6) \n- I (Yn,k,,I) = 0Ofor any k =,.,n and i > n - k±+2.

This would imply (5.5), since Dn,k = Dni,,k2 The proof is by induction in k. It is clear

by Proposit ion 5. 1(a) with n =1 and a~ < r <2 and by Proposition 5. 1(c) with n = 1 that

Bn~1 , < oc a.s. for any i > n + 1. It also follows from Lemma 3.5 and Proposition 5.2

that (5.6) holds for k = 1 and any i > n + 1. This constitutes the basis of the induction.

Assume now that for sorme 1 < k < n-i1 and anyvi > n -k +2, Bnk,, < oc a.s. and (5.6)

holds. Clearly, for any i > n - k + 1

=nk~ (U Dn,k,,+i) i..i 1,n~l

Therefore,

2n

(5.7) BnD,, ,m~s + '

The assumption of the induction implies that for any m > n -k + 1, Bn~km+ 1 ! Bn,k,m,+ I <

oc a.s. Moreover. Proposition 5.1(a) with n = k + 1. a < r < 2 and Proposition 5.1(c)

with n = k + 1 imply that Bnk12 < cc a.s. By (5.7) we conclude that Bnk-, < 00 a-s.

21



10A.,.. kl ."~q 777.

"(.-

We have
2n

(5.8) Y,,k+l Yn,km± + Yn,k +,.2n+ I

Clearly, for any m > n - k + 1, l'ft,k,m+I < Yrn k I1. Therefore, the assumption of the

induction implies that A,,-(IYn,k,,+1I) = 0 for any m > n - k+ 1. Corollary 1.2 shows then

that the claim An-(jYn,k+j,,I) 0 would follow if we prove that An-(IY,k+, 2n+aI) 0.

We have, for x > 0

P(11n,k+1,2,,+±l > X)=

P JED,, . + r j .,',,, +>

z-,- .k,1+ /,+
IJIJ.A1,.nk~j >Y 1y r n-k-i Y Y)~n-k-1dY)

Dkp 4 1

f P(.. .)dgn-k 1 (y) + P(...)dgn_ -_I(Y),

where gn is the distribution function of IF ,... r,. We apply now the contraction principle

(Theorem 1.3(ii)) and Fubii's theorem to conclude that for any y > 0

E[I L.. Y
JEL'k+ I

< C.- Ej ( ~ 1 r,, Fk- 1~k) x . -- tj . k
.pEDk~ 1 1=
JI >21.+1

for some 0 < C < c, independent of y > 0. We apply now Proposition 5.1(c) with n = k+ 1

to conclude that the a-th moment above is finite. The claim An-(IYn,1rk,2 -.-) = 0 now

follows from (5.9) and Markov inequality. This completes the inductive argument, and we

know by now, therefore, that Bn,k,, < cc a.s. for any k = 1.n - I and any i ? n - k + 2,

and that (5.6) holds for k = 1,...,n - 1 and any i > n - k + 2. It remains to consider

the case k = n. We apply (5.7) with k = n - 1. Then Btn..,,+i < Bn,n,-,m+l < 00 a.s.

as have been proven above. Moreover, Bn,n,2 n+1 < 00 a.s. by (the proof of) Proposition

5.1(b). This shows that B., < oo a.s. for any I > 2. Further, we apply (5.8) with

k = n - I and, as above, the claim A,-t0Yn, = 0 would follow once we show that

A -( (l'n,n,2n+II) = 0. But the latter statement follows immediately from Proposition S
A.'

5.1(a). This completes the proof of the theorem. ,,%

. - - -- - - 0 -A %'.
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